Hydrogen barrier coatings based on oxidized Ti$_2$AlN MAX-phases

Dr. Lukas Gröner$^1$, Dr. Frank Meyer, Dr. Frank Burmeister$^1$
$^1$Fraunhofer Institut für Werkstoffmechanik (IWM), Freiburg

lukas.groener@iwm.fraunhofer.de

Utilizing hydrogen as medium in energy conversion technologies often requires new construction materials or at least a profound surface conditioning of hitherto used materials to prevent hydrogen induced degradation. Aluminum containing M$_{n+1}$AX$_n$ phase materials have attracted increasing attention due to their good corrosion resistance, a pronounced self-healing effect and promising diffusion barrier properties for hydrogen. In this regard, Ti$_2$AlN MAX phase coatings were synthesized on ferritic steel substrates by physical vapor deposition. Raman spectroscopy revealed a formation of stable $\alpha$-Al$_2$O$_3$ after an oxidation at 700°C. The permeation of deuterium from the gas phase was measured by mass spectrometry at temperatures of 30-300 °C and permeation reduction factors (PRF) were calculated. We measured a PRF of up to ~3700 for the oxidized sample. By designing Ti$_2$AlN coatings with adjusted oxide scale thicknesses effective permeation barriers can be achieved.